ORGANIC LETTERS

2007 Vol. 9, No. 18 3535-3538

Mercury-Free Preparation and Selective Reactions of Propargyl (and Propargylic) Grignard Reagents[†]

Hukum P. Acharya, Kei Miyoshi, and Yuichi Kobayashi*

Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan

ykobayas@bio.titech.ac.jp

Received June 13, 2007

ABSTRACT

ZnBr₂ was found to catalyze formation of propargyl and propargylic Grignard reagents, and thus put an end to the standard method using a mercury catalyst. The Grignard reagents were submitted to addition reaction with carbonyl compounds and allylation with the cyclic monoacetate to afford the propargyl-type products selectively. Furthermore, the product from the monoacetate was transformed to an acetylene analogue of 2-(5,6-epoxyisoprostane A₂)phosphorylcholines.

As illustrated in Scheme 1, reaction of propargyl (HC \equiv CCH₂-) and propargylic (RC \equiv CCH₂-) Grignard reagents

Scheme 1. Standard Preparation of the Propargyl (and Propargylic) Grignard Reagents **2** and the Reaction Products with Electrophiles

2 with electrophiles (E⁺) has produced 4 and/or 5 with low to high selectivity depending mainly on the steric factor and

the reaction course in the transition state.¹ While the high level of native selectivity has found many applications in organic synthesis, study to improve the low selectivity was scarcely reported probably due to the use of a poisonous mercury catalyst such as $HgCl_2$ for the preparation of reagents 2 from halides 1 and magnesium in $Et_2O.^{2-4}$

In the preparation of $\mathbf{2a}$ ($R^1 = H$), the mercury catalyst is understood to speed up the formation of $\mathbf{2a}$ over the unwanted consumption of $\mathbf{2a}$ via abstraction of the acetylenic

[†] Dedicated to the late Professor Yoshihiko Ito, Kyoto University.

^{(1) (}a) Yanagisawa, A. *Sci. Synth.* **2004**, *7*, 541–547. (b) Marshall, J. A. *Chem. Rev.* **2000**, *100*, 3163–3185. (c) Brandsma, L. *Preparative Acetylenic Chemistry*, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 1988; pp 35–36. (d) Gaudemar, M. *Ann. Chim.* **1956**, *1*, 161–213.

⁽²⁾ Early examples of the preparation of **2a**: (a) Stadler, P. A.; Nechvatal, A.; Frey A. J.; Eschenmoser, A. *Helv. Chim. Acta* **1957**, *40*, 1373–1409. (b) Sondheimer, F.; Wolovsky, R.; Ben-Efraim, D. A. *J. Am. Chem. Soc.* **1961**, *83*, 1686–1691. (c) Sondheimer, F.; Amiel, Y.; Gaoni, Y. *J. Am. Chem. Soc.* **1962**, *84*, 270–274. (d) Viola, A.; MacMillan, J. H. *J. Am. Chem. Soc.* **1968**, *90*, 6141–6145. (e) Hopf, H.; Bohm, I.; Kleinschroth, J. *Organic Syntheses*; Wiley: New York, 1990; Collect. Vol. VII, pp 485–490

⁽³⁾ Preparation of **2b**: (a) Mesnard, D.; Miginiac, L. *J. Organomet. Chem.* **1990**, *397*, 127–137. (b) Eckenberg, P.; Groth, U.; Köhler, T. *Liebigs Ann. Chem.* **1994**, 673–677. (c) Hernandez, E.; Soderquist, J. A. *Org. Lett.* **2005**, *7*, 5397–5400. (d) Zhang, L.; Kozmin, S. *J. Am. Chem. Soc.* **2004**, *126*, 10204–10205.

⁽⁴⁾ Preparation of 2 (R 1 \neq H): Yanagisawa, A.; Habaue, S.; Yamamoto, H. Tetrahedron 1992, 48, 1969–1980.

proton from 1a ($R^1 = H$) to produce $HC \equiv CMe$, which is ultimately changed to BrMgC≡CMe (6).¹ On the other hand, the role of the catalyst in the preparation of 2 ($R^1 \neq H$) is not clearly stated to the best of our knowledge. To avoid the problem associated with recovery of the mercury catalyst, Rieke Mg was once used for the preparation of 2 ($R^1 =$ TMS). Use of zinc and lithium reagents similar to 2 (R =Si(alkyl)₃, alkyl)^{4,6,7} and the dianion, LiC≡CCH₂Li,⁸ has been an alternative choice. These anions have been synthesized by reaction of 1 with Zn,4 by lithiation of 2-alkynes with t-BuLi,^{6,7} and by lithiation of propyne and allene (CH₂=C= CH₂) with nBuLi,⁸ respectively. On the other hand, several metals have been shown to assist generation of 2 in Barbiertype reactions. These methods, however, seem less attractive because of the complicated operation to prepare Rieke Mg, inconvenience in handling gaseous propyne and allene for the preparation of 2-alkynes as well as for the direct lithiation, low reactivity and product selectivity, or the narrow range of electrophiles for Barbier-type reactions.

In contrast to the above method, two recent reports have described the preparation of 2a ($R^1 = H$) in the usual way without a mercury catalyst. Due to the significance, we reinvestigated the preparation and confirmed that the mercury catalyst is indeed necessary. Instead, we found an environmentally acceptable catalyst for the preparation of 2 ($R^1 = H$, TMS, alkyls). Herein, we describe the preparation of 2 and applications including the synthesis of 5,6-epoxyiso-prostane phosphorylcholine and its acetylene derivative.

After confirmation of the successful preparation of 2a in Et_2O (0.38 M by titration with methyl orange, 54% yield based on 0.70 M for 100% conversion) by adding propargyl bromide (1a) (1 mL scale) to Mg turnings (2 equiv) in the presence of $HgCl_2$ (0.2 mol %), the requirement of the solvent and the catalyst was briefly studied. In THF at 0-5 °C (ca. 2 h), Mg was consumed smoothly with formation of gray precipitates. Surprisingly, the concentration was almost 0 M by titration, which was consistent with the result that an attempted reaction of the mixture (supernatant and precipitates) with $Ph(CH_2)_2CHO$ (7) did not afford any alcoholic products. These results indicate a pathway to quench anions 2a and/or 6. One possibility is a coupling of

these anions with ${\bf 1a}$ to afford MgBr₂ as precipitates. Preactivation of Mg with Br(CH₂)₂Br in THF followed by reaction with ${\bf 1a}$ produced similar precipitates. On the other hand, attempted preparation in Et₂O with and without the pre-activation of Mg (with Br(CH₂)₂Br) resulted in the complete recovery of Mg.

To identify effective catalysts, the preparation of 2a in Et_2O was examined with a number of metal salts (2-5 mol %) from a stock room. While most of the common metal salts placed in group 1 of Table 1 were ineffective,

Table 1. Results of the Metal Salts Attempted for Preparation of 2a in Et_2O^a

group	metal salt	s	$\begin{array}{c} \text{consumption} \\ \text{of } \mathrm{Mg}^b \end{array}$	concn of $\mathbf{2a}$ (M) c
1	$CuCl_2$	HfCl ₄	no	
	$NiCl_2$	$ZrCl_4$	no	
	$CoCl_2$	Bu_3SnCl	no	
	$CeCl_3$	$Zn(OAc)_2$	no	
	FeCl_3	$Zn(acac)_2$	no	
	Cp_2TiCl_2		no	
2	$TiCl_4$	$Zn(OTs)_2$	yes	0
	$Zn(OTf)_2$	$ZnEt_2$	yes	0
3	$ZnX_2(X = Cl, Br, I)$		yes	0 - 0.52

 $[^]a$ Preparation was examined with **1a** (1.0 mL, 13 mmol), Mg (650 mg, 27 mg-atom), and a catalyst (2–5 mol %) in Et₂O (18 mL) at 0–5 °C for 1–2 h. b Mg turnings from Nacalai Tesque, Japan, were used for the investigation. c Determined by titration with methyl orange.

consumption of Mg was observed with TiCl₄ (group 2), though concentration of **2a** by titration was almost 0 M. To our delight, production of **2a** was brought about with ZnX₂ (group 3, Table 1). Further investigation with other zinc salts was, however, unsuccessful (see the zinc salts listed in groups 1 and 2).

Concentrations of **2a** prepared with ZnX₂ of group 3 are summarized in Table 2. For the two catalyst quantities (2

Table 2. Concentration of **2a** vs Quantity of ZnX₂

$egin{array}{lll} egin{array}{lll} egin{arra$	ZnBr_2	ZnI_2
	0.39	
0.31	0.41	0
	0.51	
0.29	0.52	0.35
	0.49^{a}	
	Z_2 ZnCl ₂ 0.31	$\begin{array}{c cccc} Z_2 & ZnCl_2 & ZnBr_2 \\ & & 0.39 \\ 0.31 & 0.41 \\ & & 0.51 \\ 0.29 & 0.52 \\ \end{array}$

^a Mg turnings from Aldrich gave a similar result (0.48 M).

and 4 mol %), the highest concentrations (0.41 and 0.52 M, respectively) were recorded with ZnBr₂ and were slightly better than that obtained above with HgCl₂ (0.38 M). A similar result was attained with Mg from a different company (see footnote a of Table 2). A somewhat lower concentration was recorded with 1 mol %. On the basis of these results,

⁽⁵⁾ Paquette, L. A.; Han, Y.-K. J. Am. Chem. Soc. 1981, 103, 1831-

⁽⁶⁾ Daniels, R. G.; Paquette, L. A. Tetrahedron Lett. 1981, 22, 1579-1582.

^{(7) (}a) Corey, E. J.; Kirst, H. A. *Tetrahedron Lett.* **1968**, 5041–5043. (b) Corey, E. J.; Rücker, C. *Tetrahedron Lett.* **1982**, 23, 719–726. (c) Commercon, A.; Normant, J.; Villieras, J. *J. Organomet. Chem.* **1975**, 9415–421. (d) Pearson, N. R.; Hahn, G.; Zweifel, G. *J. Org. Chem.* **1982**, 47, 3364–3366. (e) Ma, S.; Zhang, A.; Yu, Y.; Xia, W. *J. Org. Chem.* **2000**, 65, 2287–2291.

^{(8) (}a) Hooz, J.; Calzada, J. G.; McMaster, D. *Tetrahedron Lett.* **1985**, 26, 271–274. (b) Hooz, J.; Cabezas, J.; Musmanni, S.; Calzada, J. *Org. Synth.* **1990**, 69, 120–127. (c) Cabezas, J.; Alvarez, L. X. *Tetrahedron Lett.* **1998**, 39, 3935–3958. (d) Lipshutz, B. H.; Lower, A.; Berl, V.; Schein, K.; Wetterich, F. *Org. Lett.* **2005**, 7, 4095–4097.

⁽⁹⁾ For example: (a) Masuyama, Y.; Ito, A.; Fukuzawa, M.; Terada, K.; Kurusu, Y. *Chem. Commun.* **1998**, 2025–2026. (b) Alcaide, B.; Almendros, P.; Aragoncillo, C. *Org. Lett.* **2000**, 2, 1411–1414. (c) Nair, V.; Jayan, C. N.; Ros, S. *Tetrahedron* **2001**, *57*, 9453–9459. (d) Inoue, M.; Nakada, M. *Angew. Chem., Int. Ed.* **2006**, *45*, 252–255.

^{(10) (}a) Oppolzer, W.; Flaskamp, E.; Bieber, L. W. *Helv. Chim. Acta* **2001**, *84*, 141–145. (b) Schrock, R. R.; Duval-Lungulescu, M.; Tsang, W. C. P.; Hoveyda, A. H. *J. Am. Chem. Soc.* **2004**, *126*, 1948–1949.

we recommend the use 2-5 mol % of $ZnBr_2$ in Et_2O for successful preparation of $\bf 2a$. Note that an attempted preparation of $\bf 2a$ in THF with $ZnBr_2$ (4 mol %) produced the precipitates and a supernatant of 0 M concentration.

The ZnBr₂-assisted preparation established above was applied to **1b** (R¹ = TMS) successfully with 2 mol % of ZnBr₂. The yield of **2b** (75–86%, 0.49–0.56 M, 3 runs; cf. 0.65 M for 100% production) was a little higher than that obtained with HgCl₂ (65–77%, 3 runs). The preparation of **2b** with ZnBr₂ attempted in THF was also successful (0.43 M). The concentration was, however, substantially dropped to 0.21 M after 12 h at 0 °C, suggesting a similar process to quench **2b**. Bromides **1c** and **1d** (R = C_5H_{11} , C_8H_{17}) also produced **2c** and **2d** in 85% and 83% yields, respectively.

With the nontoxic preparation of the Grignard reagents 2 in hand, we turned our attention to reactions delineated in eqs 1-3. Addition of 2a and 2b to cyclohexanone 8 produced

the homopropargylic alcohols in good yields with a high product selectivity over the allenes (eq 1). The high selectivities observed are consistent with those reported for cyclic ketones^{3a,7b,11,12} with **2a** and **2b** that were prepared with HgCl₂, thus concluding no influence of the zinc residue on yield and selectivity of the reaction. Likewise, 4-hydroxy-2-cyclopentenone (**11**) underwent reaction with **2b** to afford alcohol **13** with good yield and high selectivity (eq 2).

Previously, lithium anion 12 was prepared by lithiation of TMSC \equiv CMe with *n*-BuLi for reaction with 11 (eq 2), and product 13 was transformed into clavulone II and its analogues.¹³ Now, preparation of TMSC \equiv CMe¹⁴ and its lithiation to 12 are no longer necessary.

Next investigated was allylic substitution of **14** with copper reagents¹⁵ derived from **2b** (eq 3), in which the regioselection at the α or γ position of the allylic moiety should be controlled as well. According to the guideline established by us for alkyl and aryl reagents, ¹⁶ a 2:1 complex of **2b** and CuCN in THF was examined first, but produced the diol derivative of **14**. After unsuccessful attempts, we found that a 1:1 complex formulated as **15** (4 equiv) at 0 °C for 4 h afforded the propargyl type of the products, but with a low regioselectivity on the substrate **14** (Table 3, entry 1).

Table 3. Allylic Substitution of **14** with Propargylic Anion **15** Derived from **2b** and CuCN^a

entry	method for preparation of 2b	additive (equiv)	ratio of 16 :1 7 ^b	combined yield $(\%)^{c,d}$
1	HgCl ₂ -catalyzed		68:32	83
2	$HgCl_2$ -catalyzed	$MgCl_{2}\left(4\right)$	85:15	81
3	HgCl ₂ -catalyzed	$MgCl_{2}(8)$	94:6	76
4	$ZnBr_2$ -catalyzed	$MgCl_{2}(8)$	94:6	77
5	ZnBr ₂ -catalyzed	LiCl (8)	87:13	79

 a Reactions were carried out with **2b** (4 equiv) and CuCN (4.2 equiv) in THF at 0 °C for 3–6 h. b Determined by 1 H NMR spectroscopy. c Isolated yield. d The products **16** and **17** were separable by chromatography on silica gel.

Fortunately, higher than the native selectivity was attained with 8 equiv of MgCl₂ (entry 3; cf. entry 2). Since **2b** examined in entries 1–3 was prepared by using the HgCl₂-catalyzed method, we also executed the reaction with **2b** prepared with ZnBr₂ to confirm almost the same selectivity and yield was obtained (entry 4), thus showing no interference to the allylation by the mercury and zinc residues remaining in the solutions of **2b**.

Finally, the allylation established above (eq 3) was applied to the synthesis of the acetylene analogue of 2-(5,6-epoxyisoprostane A_2)phosphorylcholine^{17,18} (**18b** in Figure

Org. Lett., Vol. 9, No. 18, 2007

⁽¹¹⁾ Quayle, P.; Rahman, S.; Ward, E. L. M. Tetrahedron Lett. 1994, 35, 3801–3804.

⁽¹²⁾ A similar selectivity for the 2-bromo derivative: Hirama, M.; Fujiwara, K.; Shigematu, K.; Fukazawa, Y. J. Am. Chem. Soc. **1989**, 111, 4120–4122.

⁽¹³⁾ Tanaka, H.; Hasegawa, T.; Iwashima, M.; Iguchi, K.; Takahashi, T. Org. Lett. **2004**, *6*, 1103–1106.

⁽¹⁴⁾ While the authors of ref 13 did not mention the preparation, TMSC≡ CMe has been synthesized by the methods: (a) Corey, E. J.; Kirst, H. A.; Katzenellenbogen, J. A. J. Am. Chem. Soc. 1970, 92, 6314−6319. (b) Wang, J.; Gurevich, Y.; Botoshansky, M.; Eisen, M. S. J. Am. Chem. Soc. 2006, 128, 9350−9351. (c) See ref 6.

⁽¹⁵⁾ Reactions with the propargylic copper reagents: (a) Lam, H. W.; Pattenden, G. *Angew. Chem., Int. Ed.* **2002**, *41*, 508–511. (b) Bednarski, P. J.; Nelson, S. D. *J. Med. Chem.* **1989**, *32*, 203–213. (c) Wender, P. A.; Hilinski, M. K.; Soldermann, N.; Mooberry, S. L. *Org. Lett.* **2006**, *8*, 1507–1510. (d) See ref 7c.

^{(16) (}a) Kobayashi, Y.; Nakata, K.; Ainai, T. *Org. Lett.* **2005**, 7, 183–186. (b) Ito, M.; Matsuumi, M.; Murugesh, M. G.; Kobayashi, Y. *J. Org. Chem.* **2001**, *66*, 5881–5889.

^{(17) (}a) Watson, A. D.; Subbanagounder, G.; Welsbie, D. S.; Faull, K. F.; Navab, M.; Jung, M. E.; Fogelman, A. M.; Berliner, J. A. *J. Biol. Chem.* **1999**, *274*, 24787—24798. (b) Subbanagounder, G.; Wong, J. W.; Lee, H.; Faull, K. F.; Miller, E.; Witztum, J. L.; Berliner, J. A. *J. Biol. Chem.* **2002**, *277*, 7271—7281.

80%

(1R)-16

1). Monoacetate (1R)-14¹⁹ of >99% ee by HPLC was converted into pivaloate 19²⁰ (Scheme 2). The reaction was

(1R)-14

(> 99% ee)

81%

19

Figure 1. The 2-(5,6-epoxyisoprostane A_2)phosphorylcholine family (18a-c).

somewhat slow with 4 equiv of 15 and hence an excess of the reagent was used to produce, after 2 h at 0 °C, a 93:7 mixture of (1R)-16 and the regioisomer in good yield. After separation of the mixture by chromatography, (1R)-16 obtained in 80% yield was converted to enone 22 through alkylation at the acetylenic carbon and subsequent oxidation of the hydroxyl group. Aldol reaction of 22 with the optically

active epoxy aldehyde 23²¹ gave aldol adduct 24, which was transformed to dienone 25 stereoselectively at the newly formed olefin through mesylation and Al₂O₃-assisted elimination of the mesyloxy group. Hydrolysis of methyl ester 25 by using PPL afforded acid 26, which upon condensation with lyso-PC (27) using Yamaguchi reagent furnished 18b.

88%

20

To elucidate a step for tritium labeling, early intermediate 21, ester 25, and acid 26 were submitted to hydrogenation (H₂ instead of T₂, Pd/BaSO₄, quinoline). The former two afforded cis olefins (81% from 21, 78% of 28 from 25 (Scheme 3)), while 26 gave a mixture of products. Previously, 28 was transformed to 18a by us in two steps. 18a

In summary, a new method for mercury-free preparation of 2 ($R^1 = H$, TMS, C_5H_{11} , C_8H_{17}) was established for the first time, facilitating investigation of reactions with 2. We also studied reactions of 2 shown in eqs 1-3, which proceed regio- and/or stereoselectively. Furthermore, the reaction of eq 3 was applied to the synthesis of 2-(5,6-epoxyisoprostane A₂)phosphorylcholine **18a** and its acetylenic analogue **18b**.

Acknowledgment. This work was supported by a Grantin-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture, Japan.

Supporting Information Available: Experimental procedures and spectral data of compounds described herein. This material is available free of charge via the Internet at http://pubs.acs.org.

OL071397F

3538 Org. Lett., Vol. 9, No. 18, 2007

^{(18) (}a) Acharya, H. P.; Kobayashi, Y. Angew. Chem., Int. Ed. 2005, 44, 3481-3484. (b) Jung, M. E.; Berliner, J. A.; Angst, D.; Yui, D.; Koroniak, L.; Watson, A. D.; Li, R. Org. Lett. 2005, 7, 3933-3935

^{(19) (}a) Sugai, T.; Mori, K. Synthesis 1988, 19-22. (b) Laumen, K.; Schneider, M. P. J. Chem. Soc., Chem. Commun. 1986, 1298-1299.

⁽²⁰⁾ Although (1S)-14 is the direct substrate to give (1R)-16, synthesis of (1S)-14 by the asymmetric hydrolysis of the diacetate by PLE of several lots was unsuccessful in our hand. The hydrolysis with PLE: (a) Wang, Y.-F.; Chen, C.-S.; Girdaukas, G.; Sih, C. J. J. Am. Chem. Soc. 1984, 106, 3695-3696. (b) Laumen, K.; Schneider, M. Tetrahedron Lett. 1984, 25, 5875–5878. Synthesis of **19**: (c) Curran, T. T.; Hay, D. A.; Koegel, C. P. Tetrahedron 1997, 53, 1983-2004. (d) Myers, A. G.; Hammond, M.; Wu, Y. Tetrahedron Lett. 1996, 37, 3083-3086.

⁽²¹⁾ Rossiter, B. E.; Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. **1981**, 103, 464-465.